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1. Introduction

Recently, Bagger, Lambert [[]-f]], and Gusstavson [fl, f] proposed a new field theory model
as a promising candidate for the theory describing multiple M2-branes. This model (BLG
model) is based on Lie 3-algebras, and can also be regarded as a special class of Chern-
Simons gauge theories [}, []] with V' = 8 supersymmetry.

Until quite recent, the largest known supersymmetry of interacting Chern-Simons the-
ories had been N = 3. This is because supersymmetric completion of Chern-Simons terms
include bi-linear terms of superpartners of gauge fields which break R-symmetry down
to SO(3) (or Spin(3) when hyper multiplets are present). See [ for detailed analysis of
N = 2,3 superconformal Chern-Simons theories.

This symmetry breaking is, however, not necessarily physical. If there were Yang-Mills
kinetic terms for the vector multiplets, the bi-linear terms would determine the masses of
propagating fermions and the symmetry breaking could be seen as non-degeneracy of the
masses. Then, the symmetry breaking would be physical. On the other hand, if the
Yang-Mills kinetic terms are absent, as theories we investigate in this paper, the situation
changes. In such a case superpartners of gauge fields become non-dynamical auxiliary
fields, and there is a possibility that the R-symmetry enhances when these auxiliary fields
are integrated out. The A/ = 8 supersymmetry of the BLG model is a special case of
such symmetry enhancement. The BLG model is very restricted, and if we require the



algebra is finite dimensional and has positive definite metric, the only possible gauge group
is SO(4) [0, [ld). (The positivity of the metric is not indispensable for the consistency of
the theory. See [[(0]-[F].)

In the case of N < 8, we have larger variety of theories. Gaiotto and Witten [[Lf] showed
that the supersymmetry can be enhanced to A/ = 4 in a class of Chern-Simons theories with
product gauge groups U(N) x U(N’) and Sp(NN) x SO(N'). This is generalized in [[[7] to
quiver type gauge theories by introducing twisted hypermultiplets. They construct N’ = 4
Chern-Simons theories described by linear and circular quiver diagrams. A U(N) x U(NV)
Chern-Simons theory with N = 6 supersymmetry is also proposed in [[[§]. For recent
progress in NV > 4 Chern-Simons theories, see also [ 7).

In this paper we investugate a class of N' = 4 Chern-Simons theories. The model
is described by a circular quiver diagram with circumference n. Namely, gauge group is
[1/—; U(Nr), and there are n hypermultiplets belonging to bi-fundamental representations.
The action of this model is

S = Scs + Shypem (11)

where Scg and Shyper are given in terms of ' = 2 superfields by
n . 1
Scs = ijtr[ / Brxd*o <—3 / dt(ﬁame—wf(mewf))
=1 2.Jo

+ <—% /d?’:z:dz@(b% + c.c.> ], (1.2)

and

" JR—
Shyper = — Z/dgxd49tr(@1€2V1Q1€_2v”l +QreV1Q Vi)
I=1

+ Z (/ d3$d29\/§itr(©[¢jQ[ — Q[C}[@[.H) + C.C.> . (1.3)
I=1

A brief summary of N = 2 superfield formalism is given in appendix [f]. The n vector and
n hyper multiplets are labeled by the same index I. I = n + 1 is identified with I = 1. V;
and ®; are an N = 2 vector and an adjoint chiral superfield, respectively, and they form
an N = 4 vector multiplet. Q; and @ 1 are bi-fundamental chiral superfields belonging to
(N;,Nj11) and (N7, Ny41) of U(Ny) X U(N741), and these form an N = 4 hypermultiplet.

If the Chern-Simons coupling k; of U(Np) is k; = (—)'k, this theory coincides with a
model proposed in [[[7]. We extend the model by considering more general Chern-Simons
couplings

k

kr = 5(81—81_1), sy==1, k>0. (1.4)

The model in [[7] corresponds to the choice s; = (—1)!. We allow s; to be #1 in arbitrary
order. This implies that we allow some of Chern-Simons couplings to vanish. If k; = 0, all
the component fields of V7 and ®; become auxiliary fields. We call such multiplets “aux-
iliary vector multiplets.” For distinction we call vector multiplets with k; # 0 “dynamical
vector multiplets” although they have no propagating degrees of freedom.



Chern-Simons theories with such auxiliary vector multiplets are discussed by Gaiotto
and Witten in [[[]. They introduce such multiplets to define non-trivial hyper-Kihler
manifolds as hyper-Kéhler quotients. By integrating out the auxiliary vector multiplets in
our model we obtain a Chern-Simons gauge theory coupling to sigma models with hyper-
Kéhler target spaces. This model is similar to the model in [[7], but hyper and twisted
hyper multiplets in the model are replaced by non-trivial sigma models.

The purpose of this paper is to show that our model possesses Spin(4) R-symmetry and
N = 4 supersymmetry. It would be possible to prove it by extending the arguments in [[L7]
by generalizing minimally coupled matter fields to general hyper-Kéahler sigma models. In
this paper, however, we adopt different way of proof. We integrate out only the auxiliary
fields in the hyper and dynamical vector multiplets, and leave the component fields in the
auxiliary vector multiplets in the action. A good point of this treatment is that we do
not have to solve the non-linear constraints imposed on the moment maps for auxiliary
gauge fields. We will show in the following sections that, after integrating out the auxiliary
fields in hyper and dynamical vector multiplets, the action ([[.1]) can be rewritten in man-
ifestly Spin(4) invariant form. Because N = 2 supersymmetry of our model is manifest
by construction, the Spin(4) invariance of the action implies that the existence of N' = 4
supersyminetry.

The expression of Chern-Simons couplings k7 in ([L.4) is closely related to a brane
construction of the model. Our model is the low energy limit of the theory realized on a
brane system in type IIB string theory. It consists of a stack of N D3-branes wrapped on S*
and n fivebranes intersecting with the D3-branes. We label the fivebranes by I =1,...,n
in order of intersections with the D3-branes along S!. If the charge of I-th fivebrane is
(myg, 1), the Chern-Simons coupling of the gauge field living on the interval of the D3-branes
between two intersections I and I — 1 is given by [, [9]

kr = %(ml —my_q). (1.5)
If there are only two types of fivebranes, the Chern-Simons couplings are given by ([[.4).
The action of gauge theory realized on this brane system is Sym + Scs + Shyper Where
Scs and Spyper are given in (L) and ([[.3), respectively, and Sy includes the Yang-Mills
kinetic terms. It is given by

n

Svym = Z% [1/d?’:wl29trl/VI2 - /dga:d49tr($162vf®e_zv”l) , (1.6)
= 91 2

where g7 is Yang-Mills gauge couplings depending on the position of intersecting points

of branes. The brane system preserves N’ = 3 supersymmetry, which coincides with the

supersymmetry of the Yang-Mills-Chern-Simons action Sym + Scs + Shyper-

In the low energy limit, the kinetic terms in Syy become irrelevant because the cou-
pling constants g; have mass dimension 1/2. The supersymmetry enhancement in this limit
is strongly suggested by an analysis of moduli space. The Higgs branch of this model is
studied in [P4], and it is shown that the moduli space for Ny = 1 is an orbifold in the form

clr, (1.7)



where I is a certain discrete subgroup consisting of elements of the form
(21,22, 23, 24) — (€21, e 2y, e 23, e_i624). (1.8)

If we assume the flat metric, this orbifold preserves N = 4 supersymmetry.

This paper is organized as follows. In the next section we rewrite the actions given
above in terms of component fields. It makes Spin(4) R-symmetry and N = 4 super-
symmetry of Yang-Mills-matter system Syn + Shyper manifest. We emphasize that these
symmetries are different from those of the Chern-Simons-matter system Scg +Shyper. In or-
der to distinguish the symmetries of these two systems, we denote the Spin(4) R-symmetry
and N = 4 supersymmetry of the Yang-Mills-matter system by Ryy and N = 4y, while
we refer to those of Chern-Simons theory as Rcg and A = 4¢g. In section N = 4¢g super-
symmetry transformation is written down in manifestly Rcg covariant form. In section
we prove the Rcg invariance of the action Scg + Shyper- section f is the concluding section.

2. Action in terms of component fields

In this section we rewrite the actions given in the introduction in terms of component fields.
This makes Ryy = Spin(4) R-symmetry of Syn and Shyper and Spin(3) R-symmetry of
Scs manifest.

Let us first rewrite the Yang-Mills action Syy in ([.). Although this vanishes in the
low-energy limit gy — oo and irrelevant to our model, it may be instructive to know the
explicit form of this action. It is given by

n
1 1 T AR 1 i :
Sym = 29—2/‘13xtr [_ZFIHVF;W + 5)\?37#1)“/\“‘3 - ZDHQ&?BD“W?A
=171
i : S| 1. : : :
—5Arasl ?caA?C]+ZFfBFIBA+1—6[¢}437¢?D][¢}BA7¢?0] - (21)
This includes U(N7) gauge fields F7,,, fermions )\?B , scalars ¢}4 ;> and auxiliary fields

FIA B. All these fields belong to the adjoint representation of U(Ny), and satisfy the reality

conditions
Fr)' = Fre )= Ap @Fp) =ofa (') =FPa @2
We raise and lower pairs of SU(2) indices of bi-spinors by the relation
AfAp = GACEBD)\?Dy €19 = €2 = €5 = 2. (2.3)
¢r and F7 are traceless
0= Fi'a=0. (24)
This action possesses global Ryn = SU(2)r X SU(Q)E symmetry. SU(2)r, and SU(2)g act
on undotted indices A, B,... = 1,2 and dotted ones A, B, ... = 1,2, respectively.

The action of hypermultiplets Spyper in ([L.3) is rewritten as

n .
_ —A ~
Shyper = 3 / @ atr| — DydgaDraf — 4 Dby~ F{p(if 4 — if10)
I=1



Vi o1 A1 Fr qr Y1
(1,1) (1,3) (2,2) (3,1) (2, 1) (1,2)

Table 1: Ryy = SU(2) x SU(2)g representations of component fields in the AN/ = 4 supersym-
metric Yang-Mills-matter system are shown. (We do not include the auxiliary fields in the hyper-
multiplets in this table because they do not form representations of Ryyr. The Ry invariance of
the action becomes manifest only after integrating them out.)

. .AB ~AB . —A B —A B
—iAapUTT = J10) T YT 07 4 — W1 V1 59T 4

VI 407 @05 5 — 5’/1—1A¢IBC'¢ICB +Grad7 e qi ¢IC+1B]- (2.5)
This includes scalar fields ¢q; and fermions ;. The auxiliary fields in ()7 and @ 1 were

integrated out so that the Ryy symmetry becomes manifest. We defined bi-linears

vi'B = 4G, UiB = qrpa) (2.6)

1 - - - 1.
puitp =vip —tr=vip - 5%9052‘, ifp=vip —tr=0ip— 51/10053 (2.7)

and
. . _B .. _ ,_\: . —B .. -
itP = V24 0] — V2 By paie, 1P = V20 0 — V260 PPG e (2.8)

“—tr” used in (R.7) represents the subtraction of the trace part of two SU(2) indices. (R.7)
and (P-§) are components of current multiplets coupled by the vector multiplets. Other
components in the multiplets and the supersymmetry transformation of the components
are given in appendix [B. Indices in (R.H) are consistently contracted, and this action is
manifestly Ryyr invariant. The Ry representations of component fields are summarized
in table [I.

The N = 4y supersymmetry transformation is given by

067 5 = 2i(Ep f ) — i (Epe AT, (2.9)
Svry = — (€ 5 PB), (2.10)
NI = S €Ay + 64 D,0 o+ FogOR 4 o, o pl6P, )
OFf' 5 = 2i(€pen" Dudi) = 2i(€paldf p APP]) — tr, (2.12)
for vector multiplets and
Saft = V(e p), (2.13)
04 = \/§§CB¢IBAQIC - \/ichQIC%BHA + V29" i Dyg? (2.14)

for hyper multiplets. The parameter SAB belongs to (2,2) representation of Ryy =
SU(Q)L X SU(Q)R



qr Uy
s;=1 | (2,1) (1,2)
si=-11(1,2) (2,1)

Table 2: Rcg = SU(2)41 x SU(2)_1 representations of component fields of hypermultiplets are
shown.

The introduction of Chern-Simons terms Scg in (L) breaks the supersymmetry to
N = 3. We can see this by rewriting the action in terms of component fields.

n .
1 )
Scg = Zk‘[/d?’xtr [e‘“’p <§U[uayvlp - gUIpUIuUIp>
I=1
+507 gL A+ 07 poT e of 4+ 5)‘343/\1314] - (215)

In this action, some dotted indices are contracted with undotted indices, and thus Ry is
broken to its diagonal subgroup SU(2)p. The parameter SAB is split into the singlet and
the triplet of SU(2)p, and only the triplet part of the supersymmetry is preserved by the
Chern-Simons action Scs.

As we mentioned in the introduction, however, it may be possible that the symmetry
enhances with the decoupling of Syy and an appropriate choice of k7. Indeed, it is shown

in [[7 that if the Chern-Simons coupling is given by ([.4) with
s= (1, (216)

the R-symmetry SU(2)p enhances to SU(2) x SU(2). We should note that this enhanced
symmetry acts on component fields in a different way from the original SU(2);, x SU(2)g
symmetry. We denote the new symmetry by Rcg = SU(2)41 X SU(2)—1. In the model
with (P:16), the component fields in the hyper multiplets belongs to the representation
shown in table B [[]. A hypermultiplet (gr,%7) with s; = 1 is transformed in a different
way from a multiplet with s; = —1. These two types of hypermultiplets with different
sy are called hyper and twisted hyper multiplet in ] In the following we prove Rcs
invariance of our model based on the assumption that (gr,7) are transformed in the same
way even when sy are not given by (R.16).

In order to show the enhancement of R-symmetry, we integrate out A; and F7 in
dynamical vector multiplets. The equation of motion of F7y is

kr

7(25?3 = ui'p — fif_1n, (2.17)

and we can eliminate the ¢; component of the dynamical vector multiplet. At the same
time, F7 itself disappears from the action. The equation of motion of \; is

kAPA = B — 5B (2.18)

We eliminate A; in the dynamical vector multiplet by this equation.



The resulting action includes the following fields

(q1,%1) in hyper multiplets
(vru) in dynamical vector multiplets (2.19)
(i, @1, A1, Fr) in auxiliary vector multiplets

3. N = 4 supersymmetry transformation

3.1 Hyper multiplets

Now let us write down the N’ = 4¢g supersymmetry transformation. This is achieved by
rewriting A/ = 3 transformation in Rcg covariant form.

N = 3 transformation is obtained from that of N' = 4y given in the previous section
by neglecting the distinction between undotted and dotted indices, and make the transfor-
mation parameter {4p symmetric with respect to the exchange of two SU(2) indices.

From this N/ = 3 transformation, we can obtain N = 4¢g transformation by carefully
introducing distinction between SU(2);1 and SU(2)_; indices so that g; and 17 belongs to
the representations shown in table fl, and indices are contracted among the same kind of
indices. We use overlined and underlined indices for SU(2)4+; and SU(2)_;, respectively.
Two indices of the parameter & are associated with different SU(2) in Rcs. We assume
that the first and the second index are acted by SU(2)1; and SU(2)_, respectively.

Let us rewrite the transformation of ¢; in (R.13) in the Rcs covariant form. The
Rcs representations of gy and 17 depend on sy, and the contraction of indices in the
supersymmetry transformation also depends on sj.

dait = V2 Bprp) (s1=+1), daqi = V2i(EPAyy) (sr=-1). (31

In the left and right transformations in (B.1]), SU(2) index of ¢ is contracted with the
second and the first index of &, respectively.

In general, if we have supersymmetry transformation laws for s; = +1, we can always
rewrite them into transformation laws for s; = —1 by replacing overlined and underlined
indices by underlined and overlined ones, respectively, and exchanging two indices of the
parameter £. In the following we give only transformation laws for s; = +1.

Let us consider the transformation law of 17 4. The transformation (P.14) includes ¢r
and ¢ry1, and we treat these fields in different ways depending on k; and ky1q. If kf =0
(kr+1=0) we eliminate ¢; (¢r41) by using (2:17) while we leave it in the action if k; # 0
(kr+1 # 0). For example, if k; = 0 and k;11 # 0 we leave ¢; in the action and eliminate

é141 by (R17). From (R.14) we obtain N = 3 transformation as
NG B C 231\/— C~B 231\/— C B N B
0Yra = V2cBéT AqT + T 28cBar BT A — e 25@@% Pri1A+ V2y £§éDqu . (3.2)

We put overlines and underlines to the indices in the third and fourth terms. However, it
is impossible to do it consistently in the second term.

In order to resolve this problem we introduce the following shifted field.
SI

(' s+ fify ). (33)

A A
SDIB:¢1B—



By this field redefinition we rewrite the transformation (B.J) for general k; and k7.1 as

\f 251, D oD

Othra = \/§’Y‘L§§ADMQ? - Scavi DqI — 41V p)

B C© 2V2s;, B
+ <\/556§90TAQIC> _— ( §ophi- 1A‘JI>
k770

4 (2\/_81

C B
— (V2eopaf ¢t1a)
= kr41=0

+6" 7, (3.4)

C
Sopdr N1+1A>
kri17#0

where (- )condition Mmeans that it is included only when the condition is satisfied. This
transformation still includes non-covariant terms and we collected them into the last term,
"1, which is given by

V2s V2s ~
g =— ( Leon(ur — fir—1)P adf - A Leonaf (v — i) a .
kIZO k)[+1 0

(3.5)
We will comment on this non-covariant part at the end of the next subsection. It will there

be turn out that we can easily remove this unwanted part from the transformation law.

3.2 Vector multiplets

Let us write down the N = 4¢g transformation law for vector multiplets. If a vector mul-
tiplet is dynamical, it has only one component vy, as shown in (2.19), and by using (2.18)
the transformation law (2.10) is rewritten as
SI .AB ~BA
dvry = _?fﬁﬁfm(][ = =) (3.6)

This is Rgg invariant.

In an auxiliary vector multiplet, we have four component fields. In order to write
manifestly Rcs covariant N' = 4¢g transformation laws, we need to shift the fields A\; and
Fr as well as ¢ in the following way.

NP =AY - %(y[ + 74, (37)
FI B —FIB+ k(KIB+KI 1B)
ST ~
2k: Li(ur + i) o, 9§ 5] - %[(M + -1 B, 1], (3.8)

where K; and K; in (B-3) and J4 and j}L appearing in (B.9) below are components of
current multiplets defined in appendix [§. The transformation laws of Ury, @1, and A} are
manifestly covariant.

AB ~AB
ovry = SAB’YM (X Tt Qk( +JI 1)> (3.9)

St = 2i§5§A}CA _ z'aéﬁg@xlcg, (3.10)



A T i1
5}\’[ E 2 ,u SABFI/M/ 2k MSAB(JM_i_J;t 1)"’_’}/”6 CDu(pIC_i_SCB .
1 1 = =
+2[<PI T Cpler2 4 252 [(per + Fir—1)? Ca(NI+NI 1)“plePE. (3.11)

The transformation of F I’A B includes non-covariant terms.

1AC /AD

SFAS = 225307 Dy N'C + 2ig N 2 L]
[530( i+ - 1) ,SDID]

2ZS[ C vy
- k‘ [gBD NP - tr, (s + fir— 1)A*]

[513[)(]1 1)L — b, (g + i 1)1l

+5’ FA5. (3.12)
We collected non-covariant terms into §'Fy. It is given by

\/_ZS[ —A —=A \/EiSIfCA(
k

5/F —tep(af VT +V_1qf 1) + UrBGic +Gr-1c¥1-18), (3.13)

where W74 is the left hand side of the equation of motion ¥;4 = 0 of the fermion 4.

U4 ="Dythra — ¢F atbrn + V1pdPiia + V2Aiaql — V24aF Ai+1pa. (3.14)

Among the supersymmetry transformation laws written down in the previous and this
subsections, 0ty and 0F] include non-covariant parts §’¢p; and &' Fj. These non-covariant
terms may be simply removed from the transformation because, as is easily checked, the
action Scs+ Shyper 18 in fact invariant under the non-covariant transformation ¢’. Removing
these terms, we obtain completely Rcg covariant N = 4¢g supersymmetry transformation
laws.

Note that the §’ transformation does not generate physical symmetry. We can easily
see that if we use equations of motion (25) and ¥ = 0 both §'¢) and ¢'F”’ vanish. Thus
0’ acts trivially on fields on shell, and does not have physical significance at least in the
classical theory.

4. SU(2) x SU(2) invariance of the action

In this section, we prove the Rcg invariance of the action Scg + Shyper. Here we use N =3
notation to simplify equations. Namely, we use plain indices without dots or lines for any
SU(2). It is easy to check if each term is Rcg invariant or not.

We first rearrange the action into the following three parts. The first part, §kin,
includes the kinetic terms.

n .

~ 1 1

Skin = E / Azt [k‘zé‘”” <§vm5uv1p - gvmvzyvm>
I=1

_ —A
_DM]IADMQ}4 — )y WMDMMA] . (4.1)



This part is manifestly Rcg invariant. We use hats for manifestly Rcg invariant terms.
The second part, Spot, includes potential terms

k ~
Spot = Z/d?’wtr[éﬁBFIBA — F'p(uf A — iif-14)
1

1 1. kr
—SV AT 00T B = ST AdT 00T 18 + 5 67 BOT COf 4

+qra07 cqf‘¢?+13] : (4.2)

This part is analyzed in section 1.
The rest of the action is the following part including Yukawa terms.

iky . . ~
SYukawa = Z/d3$tr |:7)‘II4B)\IBA - ZAIAB(]?B - JIA—BI)
I

. —A —A
+irpy ¢}3A - Z¢1_1¢I—1B¢}3A . (4.3)
This part is analyzed in section [£.9.
4.1 Potential terms
We decompose the potential term by
n
I(k I(krk
Spot = D_(Spett’ + Sperz ), (4.4)

I=1

where S;g:{) and Ségg’kl 1) are defined by

I(k kr _
Sp(()t{) = /d?’:ptr [EQS}L‘BFIBA — Fftp(ufa —if 1a)

1 1. kr
—§V?A¢?c¢?3 - 5’/}4—1A¢?C¢?B + €¢?B¢?c¢% , (4.5)

I(krk _
Sp(()té ) = /dgmr(QIA(ﬁj[BCQ}L‘(?(IJHB)' (4.6)
S;g:{) includes only one ¢; while Ségg’kf +1)
We first consider S*7). When k; # 0, we eliminate ¢; by using (.17). Then §HtkD)

potl potl
includes only scalar fields g7, gr_1, and their Hermitian conjugates.

includes ¢; and ¢y41.

Séff:{#o) = /d%tr [%Q?ﬁ?cqmﬂ?_w + %5]-13#?-10#-1#?/&]
+8557”, (4.7)
§}I)(()Ig;é0) = % /d%tr[_N?BN?AﬂICAC —ﬁ?—1B/~l?—1AV§JC
—vitapton§ B — Vi ART BT 1B
+§u}43u?cu?A - §~}4—1Bﬁ?—1cﬁ?—m]- (4.8)

— 10 —



Because we now assume ky # 0, gr and ¢y are transformed by different SU(2) factors in
Rcs. Thus, if SU(2) indices of g7 and those of g1 are contracted, the term breaks the Rcg
symmetry. To prove the Rcg invariance of the action, we need to show that such terms
cancel among them when we sum up all terms in the action. By this reason, we separate
manifestly Rcg invariant terms and denote them by Sp(()ﬂ) In each term in Sp(()tl)
of ¢r and those of gr_1 are separately contracted. Contrary, in the first line of (.7) some

indices

indices of g; are contracted with g;_1, and breaks the Rcg symmetry.
When k; = 0, we rewrite the field ¢; and Fy by the Rcg covariant field ¢; and Fj
defined in section . We obtain

gl (kr=0) 814 28y (k=0
p(()t{ /d3 |:_—VI 1BV}3 1CSDIA— V?CVIBASD?B +Sp(()t{ )‘1'017 (4.9)

k
where we collected Rgg invariant terms into Sp((f{ =0)
ol (k=0 1 2
Spors ) = / d’ztr [ — Sl ael el B — vitant ouf s

1_4 2
~ B _C ~A ~B _~C
—§VI—1A<PI CPI B — ﬁ”}—lAM—lCMI—lB

_FI/AB(,UI —fir-1)%a

%2 (w4711 alur = 1) o(pr — fir-1)°s |, (4.10)

and CT is defined by

O = 2 WAttt s~ i) (4.11)

It is convenient to write (.7) and (f.9) in the unified form

SIWD = Bl 4 ATk o G100 4 (0T, (4.12)

where AL*1) and BI(:1) are defined by

Attt — 2 [ ot 7 oa i 1), (413)
Altkr=0) _ 21 dPotr(—2v) cvf a0 B+ af 611 5T (1 — Br-1)P ), (4.14)
BIh#0) — 72 d’ wtr(q; - 1BM1 1CQI 1HT A) (4.15)
BI1=0) — s—kl /d?’xtr(—?;fquﬁzB_wsD?A — Q10T BaT 1 (b — fi-1)Pa). (4.16)
Next, let us consider Spgg’k”l). This term contains ¢; and ¢ry1, and we need to

consider four cases separately according to whether k; and kryi are zero or not. When
kr # 0, we use (R.17) to eliminate ¢;, and when k; = 0 we rewrite the field ¢; according
to (B.3). We treat ¢y, in the same way, too. The result is

S;(()g,kzﬂ) — Al _ pl+ikre) Sp(()’ié,k1+l)‘ (4.17)
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I(kr,kry1)

We collected manifestly Rcg invariant terms into S pot2 . It is given by
Gl (k1 #0,kr 170 (4 B A 4_ —p 4
Sp(()té;ﬁ 70 - /dgfl?tr w2 dranr ol g s+ 2 darr1041 nfis|, (4.18)

SI(k1£0,kp11=0 [ 4 _ - 2s7_ -
Spgé# =0 /d?’a;tr _EQIANIBCQ?N?B_?QIAMIB—ICQ?(P?+1B:|7 (4.19)

AT (k1=0,k1 4170 [ 2s7_ 4 _ _
il =0kri70) / dPatr _TQIA‘PIB caitufip + ﬁqmu}g cq}“u?B] . (4.20)

AT(kp=0,k7+1=0 a e 4 e
Sp(()té =0 _ /d%tr [QIA‘:D?CQI Pi+1B — EQIAIUIBC‘]I KT B
1 ~ A _
+o5@ic (i — A1) paf (e — ,U)BA} : (4.21)

If we sum up ([L13) and ([17) over all I, all A’*1) and B/(*1) cancel and we obtain

Spot = 3 _(SLGD 4 GGty 1 N ol (4.22)
I=1 k=0

4.2 Yukawa terms

Let us consider Syykawa in (f.). We decompose it as

Sulawa = Z sitkn) (4.23)
where
Séflkawa / d3zt |:£)\}4B)\IBA —idras(t? — 315)
FigrE0T SF A — i1 Y150 al. (4.24)
Again we should discuss two cases with k; # 0 and k; = 0 separately.

If k; # 0, eliminating A\; by using the equation of motion (R.1§), and rewriting ¢;
by (B-17), we obtain

I(k;0 { (k10
SYElklgjva) = k—I(YI—l + X7) + Syigia), (4.25)
where we defined
3 L 4B, —A B
Xr = /d rtr |:_§]I JIBA + 2V1BYT 1y A] , (4.26)
3 L~p~ —A,  ~B
Yr = /d xtr [—531 JIBA + 2¢ 1 YrBuy A] ; (4.27)
and
S\I(ikk;fvg = /d%tr Jr-1BAjT —2¢13¢1 fir- 1A—2¢1 1r-1BUT A] (4.28)
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When k; # 0, q; and 11 are rotated by the same SU(2) as ¥7_; and gr_1, respectively, and

we see that terms in Sysllffg) are manifestly Rcg invariant while X and Y are not. We define

Z = /d3xtr[€AB€CDQ}4E?Q}BE? — PP brcTrpin
+T/JIAE}4Q}B§IB - E?wIAqIBQIB]- (4.29)
This is manifestly Rgc invariant, and the following identity holds.
Y — X = 2. (4.30)

By using this identity, we can rewrite the action ({.25) as

Ski70) %[— s X1-1 + 51X I] = 232 L7y + §lki70) (4.31)
where we used the relation s; = —sy_1, which holds when k; # 0.

Next, let us consider k; = 0 case. Rewriting ¢; and A; in the action according to (B.3)
and (B.7) we obtain

= 18
Synid) = TI(—YI—l + X1) + Séglklgaw(;)

~.

= —(—s7—1X7-1+s1X7) — -t 21_1 + SYEﬁ{IaW? CJ, (4.32)

P

where C7 is defined in ({.11]), and SHE=0) 4 cludes Rcg invariant terms.

Yukawa
ASI(kr=0 —A . —A . . ~
SPiy) = /d%tf{ — i 1T A + sl 4 — iNag (7T — JiB) [ (4.33)

Summing up SYEJka)W& in ([:31) and (£:39) over all I, terms with X; and Y7 cancel, and

we obtain .
is
Syukawa = Y (—7121 + Yukawa) S ol (4.34)
I=1 k=0
Adding ([£:22) and ([£.34), we obtain the manifestly Rcs invariant action
I(krk ST & I(k

Scs + Shyper = Skm + Z < potl + Sp(()té 1) L — 21+ SYElkIa)Wa> ) (4.35)

I=1

and the proof is completed.

5. Conclusions

In this paper we investigated the Spin(4) R-symmetry and N/ = 4 supersymmetry of the
three-dimensional Chern-Simons-matter system described by the action Scs+Shyper, Where
Scs and Shyper are given in (L2) and ([.3), respectively. This model consists of dynamical
and auxiliary vector multiplets and bi-fundamental hypermultiplets. The dynamical vector
multiplets have Chern-Simons couplings +k while the auxiliary vector multiplets do not
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have Chern-Simons terms. (Although we call vector multiplets with non-vanishing Chern-
Simons couplings “dynamical” for distinction, they do not have propagating degrees of free-
dom.) After integrating out auxiliary fields in the hyper and dynamical vector multiplets,
our model includes (qz,%) in the hypermultiplets, (v7,) in the dynamical vector multi-
plets, and (vr, ¢r, A}, F7) in the auxiliary vector multiplets. We wrote down the N = 4
supersymmetry transformation in terms of these component fields in manifestly Spin(4)
covariant form in egs. (B.1)), (B-4), and (B.9)-(B-13). We also proved the N = 4 invariance
of the action in section [ by rewriting it in the manifestly Spin(4) invariant form ([£.33).
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A. N = 4 multiplets and N = 2 superfields

In this appendix we summarize our conventions for spinors and superfields. Because all we
need in this paper are actions and transformation laws in terms of component fields, which
are given in the main text, we here do not present detail of the superfield formalism. The
purpose of this appendix is to show rough relation between components and superfields.
We use (— + +) signature for the metric, and v* are real 2 x 2 matrices satisfying

1 1
= gtr(y"), € = Str(vy ). (A1)
To make fermion bi-linears, we use the antisymmetric tensor €,3 defined by
€19 = —€91 = 1. (A.2)

For example,
(x) = n%eapx”s  (M"X) = neap(1") X" (A.3)

Let (x*, 90‘,5(1) be the N' = 2 superspace. 7" is the complex conjugate of the complex
spinor #%. The complex conjugate of the product of two Grassmann variables a and ( is
defined by (af)* = f*a*.

A vector superfield in the Wess-Zumino gauge is expanded as

V(vy,0,\, D) = (04"0)v, +i(00)0 + 6%(OX) + 7 (0N) + %62§2D. (A.4)

The transformation laws of component fields in the Wess-Zumino gauge are

do = i(EN) +i(EN), (A.5)
vy = (§9N) — (€M), (A.6)
8D = i(Ey" D) + i(Ev" D) +i(€ o, A]) +i(E[o, N)), (A7)
SN = “AMER,, +A"ED,0 + DE. (A.8)

2
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The field strength superfield W, is defined by
W, = —%ﬁ2(6_2VDae2v). (A.9)
We expand a chiral superfield as
O(p,9, F) = ¢+ V2i0 + i0?F + § dependent terms. (A.10)

The supersymmetry transformation including the gauge transformation restoreing the
Wess-Zumino gauge is

56 = V2i(&y), (A.11)
5 = V2EF +V280¢ + V2yED ¢, (A.12)
OF = V2i(Ey*Dyp) — V2i(Eavp) — 2i(EN) 6. (A.13)

An N = 4 vector multiplet is made of an N/ = 2 vector multiplet V' with components
(v, 0, A, D) and an adjoint chiral multiplet ® with components (¢, x, F). In order to make
the Ryn = Spin(4) symmetry manifest we form the following Ryy; multiplets.

AB = (i_%) oy = (\/(;—qb {?), Fip = <\/§}¢ @‘b), (A.14)

where D’ is the shifted auxiliary field
D= D53 (A.15)

A hypermultiplet is made of two chiral multiplets Q(q, v, F') and @(Ej, {bv , ﬁ) These two
chiral multiplets must belong to conjugate representations of gauge group to each other.
We define the following Ryy doublets.

¢ = (") = (0,0), U= (i) = (1, 9). (A.16)

B. Current multiplets

The components of current multiplets are defined by the differentiation of the action Shyper
given in (R.H) with respect to the components of vector multiplets.

0Styper = —OFf BuP A — 045377 + Svp, IV + 607 5 KT 4
+5FﬁlBﬁ?A + i‘S)‘I+1ABj}4B - 5”I+1Mjﬁ - 5¢34+1BK.IBA7 (B.1)
where S}Ilypor is the part of Shyper including (qr, 7).

w, i, j, and J have been already given in (1) and (B.§). The other components are

A i
Jt = iq? DuGra — iDuaiGra + (Y avur), (B.2)
~ _ . A
i = —igr oD a + D" aq — (D705 4), (B.3)
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A .. A A A -
K7 g =i by — zpmzp[ — 1/1 C¢IB ¢1 BVICC +QIC¢I+1BQI07 (B4)
~ A —A — 1. i 1.4 - _ i
Ki'p =+ — §6Bw1 Yre+ 57 €Ot p + 50T 57F € — T pai - (B5)
The N = 4y\ supersymmetry transformation of u, g, 7, and 5 are
51‘/[43 = Zch"j}qc - 5B£D03DC (B.6)
0t B = ipediC 553@70;‘1 : (B.7)
5B = —in MBI 4+ 27, 69P D o — 26O K P o 4+ 269P i o, 07 ], (B.8)
0j1F = =iy € Ty + 2P Dy e — 264 KT o+ 26P it o, 0 pl. (BY)
AF =B : _
0J} = Eap™ Dyttt = V25" a T + V2P 5
—[Ep i7", 01 ¢) + 2 AT 1f 4l (B.10)
= ~AB —B : _
‘Uf = gABVWDuJ?B - fﬁABVM‘I'I ‘J}4 + ffABV”QIA‘PIB
—[5037”] 7¢1+1A] + 2[5,437 >\I+1a/71 cl, (B.11)
SK{ sy = —i€q 7" D,U, +V2i€ 50007 + V2IECAT 470
[f[)cj[ — tr, ¢I B] 21[5[)]3)\0 y M1 C] — tr, (B.12)
SR{ 5 = —i€op* Dudf * + V2t s T7 af + Ve 00
—i[epedt ™t — tr, ¢1+1B] 2i[Ecp AP, 1 D] — t. (B.13)
These components are transformed among them linearly up to the equation of motion of
Yra given in (B.14).
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